EVALUATING COLLABORATIVE FEATURE IN WIKI BY SPECIFIC INTERACTION LEVELS AND USER GUIDANCE

IRSHAD AHMAD ANSARI, MR.K.KUMAR

Mca (final year), veltech technical university avadi chennai india
Assist prof dept of mca, veltech technical university avadi chennai india
irshadahmad0592@gmail.com
hellokumar@gmail.com

ABSTRACT -

Nowadays wikis are among the most popular technologies for collaborative feature in wiki and distributed content authoring people from all over the world can access the content at the same time and any change immediately available to all users. Wiki are fully editable websites where in any user can read or add the content to a wiki site. In this paper we are going to evaluate collaborative feature in wiki by specific interaction level’s and user guidance. This means how support will be provided by Wiki authoring feature can be improved for specific interaction levels and how user can be guided by means of good practices. All process collaborative by ontology wiki authoring, a wiki is able to collaborate and exchange of ideas is important, moreover wikis can help provide a flexible, user friendly and cost effectively for collaborative knowledge creation, interaction levels, and user guidance, the wiki collaborative features effectively support the collaboration among domain engineer, domain expert and user.

KEYWORDS -wiki authoring, domain expert user guidance, collaborative process, user friendly and cost effective interface ontology author.

I. INTRODUCTION

It is nowadays wiki’s are most popular technologies for collaborating and distributed content authoring people from all over the world. a wiki is able provide a learning environment for user. From a technical point of view wiki can help provide user friendly and cost effectively for collaborative knowledge interaction level and user guidance. In this paper we are going to investigates, both at the theoretical and practical level, in wiki feature for collaborating ontology authoring [1][2] in supporting teamwork’s composed of domain expert, knowledge engineers and user. The requirement of supporting the individual of all modeling team, but user may not participate to physical meeting but user can interact with each other. These different collaborative modeling may benefit from the availability of wiki tools for ontology authoring. Nowadays wikis are among the most popular technologies for collaborative, interact and distribute content authoringpeople [6]. User from all over the world can access and interact with same version of content and any change is immediately available to all the users. Although originally for editing of unstructured content, wikis editing interface can easily customized(see)[6][7], at user and group of users interaction level and guidance provide mechanism to access and author the ontology compatibly to the team members. Simplified and guiding interfaces may be provided to domain expert and user to edit a limited part of ontology while more powerful interface may be offered to knowledge engineers.
The above figure there is two access modes

Unstructured access mode: In this access mode allows the user to edit and view the content of the unstructured part of the MoKi page of an ontology entity. The editing and viewing of this part occurs in the standard MediaWiki way. The textual description of the Concept Mountain in Fig. 1 (top-right) is an example of this access mode. This access mode is meant to be used by any user of the modeling team.

Fully-structured access mode: In this access mode allows the user to edit/view the content of the structured part of a MoKi page using the full OWL 2 expressivity, allowing to view/edit formal statements (axioms) describing the ontology entity associated to the page. Axioms are written according to the latex2owl syntax, a latex style format for writing ontologies using a texteditor, which can be automatically translated into (an RDF/XML serialisation of) OWL. This access mode is meant to be used by KEs only.

One of the successes of wikis lies in the easiness of customizing them for a given context, especially for what concerns the user interface and the way users interact with the content. For instance, tens of extensions of the MediaWiki framework deal with customizable user input methods, e.g., by means of forms or input-boxes. Indeed, content access/editing interfaces can be easily customized even per user or user group, so to provide mechanisms to access and author the wiki content tailored to the preferences, skills, and roles of the team members, thus favoring and supporting their participation in the authoring process. Finally, in this paper we are investigating both at that theoretical and empirical level, the theoretical performed by using a reference framework for analysis of collaboration feature in wiki tools, provided by specific interaction level’s the wiki collaboration feature contains framework. The empirical evaluation performed with real domain experts[9, knowledge engineer and user according to methodology proposed the aim of understanding more in detail whether wiki collaborative features are effective in knowledge engineer, domain expert and user this evaluation has performed using MOKI a wiki-based ontology authoring tools wiki the result of evaluation show that wiki collaborative features.

II. MOTIVATION

In this work we are investigating, both at the theoretical and practical level [9], the effectiveness and impact in wiki interaction levels and user guidance. How the support provided by wiki authoring features can be improved for specific interaction levels.

Here article owner can post the article in Wiki the user interface and the way users interact with content. User can access the content and edit/suggest interface can be easily and all record will be saved in the backend for ontology author after completing process domain engineer can see the all record and suggest to user according to user problem customized ever per user or per group, wiki offer discussion mechanism the talk tab with wiki page to enable users to communicate/comment/debate the content of a wiki page comment may be organized in sections or threads.
III. PROBLEM DEFINITION

The order of features of online based information sharing which has been register before, and not have future information’s like history of author. But according to this paper if any user interacts [3] with wiki and collaborative feature by ontology author and specific interaction then record will store in level by level

- Making domain engineer more active in the authoring of ontologies
- Supporting the collaboration during modeling
- By wiki collaborating feature in actively involving in domain expert and users
- Different application data are stored in the same moki provide editing, easy to access, maintenance and updating for collaborative

V. ARCHITECTURE DIAGRAM

Architecture diagram is an overall process diagram of work, the main focus on how user interact with wiki content and guided by domain expert, in WIKI collaborative architecture diagram knowledge engineer can add the domain expert [5] for handle the Wiki collaboration feature and interaction level and user guidance in Wiki domain expert share the article in Wiki and convert it in own ontology. For security purpose.

VI. JUSTIFICATIONS OF RESULTS

In above diagram user also interacts with Wiki and sent the request for any query according to knowledge and domain expert will give the response. Here user also can suggest for article if user want to edit the article then can also send response for change and add something.
In this section we describe the theoretical analyses performed on the collected data, including the objective data related to the process and ontology analysis [7][8] as well as the subjective users’ evaluations. And user interact with both data in access mode it means unstructured and fully structure.

<table>
<thead>
<tr>
<th>D.E.id</th>
<th>Name</th>
<th>E.id</th>
<th>T.Name</th>
<th>Password</th>
<th>Repass</th>
<th>status</th>
<th>Added.D.E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>Priyad</td>
<td>pr@gmail</td>
<td>product</td>
<td>**********</td>
<td>**********</td>
<td>added</td>
<td>added</td>
</tr>
<tr>
<td>1002</td>
<td>Akmal</td>
<td>ak@gmail</td>
<td>execution</td>
<td>**********</td>
<td>**********</td>
<td>added</td>
<td>added</td>
</tr>
<tr>
<td>1003</td>
<td>Arun</td>
<td>ar@red@gmail.com</td>
<td>execution</td>
<td>**********</td>
<td>**********</td>
<td>Tc added</td>
<td>added</td>
</tr>
</tbody>
</table>

Table description D.E.id means domain expert, T.name means team name, all domain expert status will be added here for knowledge.expert.

We analyses the influence of the treatments on each of the data reported in above figure Due to the non-applicability of parametric theoretical tests because of the violation of the preconditions (small number of data points and non-normal distribution), We applied theoretical and practical test [9].

VII.RELATED WORKS

In this paper we substantially extend the work presented in wiki by specific interaction a wider perspective of the findings and a finer-grained analysis of the support provided by the wiki collaborative features to the collaborative authoring. In detail, we introduce a theoretical analysis of the contribution of wiki collaboration features with respect to social interaction aspects; we practically investigate the impact of the collaborative features on both the resulting process of collaborative modeling and the ontology entity lifecycle (two additional research questions have been introduced, we provide a deeper analysis and discussion of the mined results, and we finally carefully analyze possible threats in our findings.

VIII. CONCLUSION

To support a more active involvement of domain experts in ontology editing, some attempts were also made by exploiting controlled subsets of natural language.

The strictly theoretical analysis and empirical evaluation, presented in this paper shows that wiki collaborative Features for ontology authoring, by actively involving domain experts in the authoring process and supporting the specific interaction of user guidance with other team members, effectively support and affect the process of collaborative ontology authoring, as well as the lifecycle (and possibly the quality) of the built ontology entities.

This result on one side highlights the support provided in wiki collaborative features by specific interaction levels and user guidance, actively involving DEs in the (collaboratively) building of ontology’s; on the other side, it encourages other collaborative non-wiki based tool to extend their functionalities adopting these simple but useful collaborative features.

IX. FUTURE WORK

Further works analyzed the collaborative aspects in ontology modeling. And describe an observation study with users on the support provided by Collaborative user to address requirements (e.g., concurrent editing’s, track changes, discussion mechanisms) for collaborative ontology development. In a set of indicators is proposed and applied to understand the social arrangements in community-based ontology evolution [10]. Investigate the implicit roles of authors in collaborative ontology modeling, and analyses the relationship between ontology changes and how users communicate and suggest the wiki author and interface with each other this process will enhanced in future works.

ACKNOWLEDGMENTS

The authors thank Mr.k.kumar for their support in arranging the evaluation, as well as the members of veltech technical university who took part of the experiment for their availability. And feedback provided.
X. REFERENCES

IRSHAD AHMAD ANSARI
at present doing MCA from veltech technical university, research work is evaluating collaboration feature in wiki by specific interaction and user guidance means how user guided by wiki author.

Mr. K. Kumar
asst prof of MCA education qualifications is MCA, and M.Phil. I have 14 year and 5month experience in education field at present teaching in veltech technical university Chennai