MULTIPARTY ACCESS CONTROL MECHANISM FOR ONLINE SOCIAL NETWORKS

Sadananda B C*, Dr. Ramanagouda S Patil*

Abstract—In recent years we have been watching a tremendous increase in the growth of online social networks(OSNs). OSNs enable people to share personal and public information and make social connections with friends, family members and other peoples. In addition to the rapid increase in the use of social network, it raises a number of security and privacy issues. While OSNs allow users to restrict access to shared data, they currently do not provide any mechanism to totally enforce privacy issue solver associated with multiple users. The proposed method implements a solution to facilitate collaborative management of common data item in OSNs. Each controller of the data item can set his privacy settings to the shared data item. The proposed method also identifies privacy conflicting segments and helps in resolving the privacy conflicts and a final decision is made whether or not to provide access to the shared data item.

KEYWORDS: Online Social Networks, Multiparty Access control, Policy Specification, Privacy Conflicts

I. INTRODUCTION

Many people are interested in sharing personal and public information about them and make social connections with friends, coworkers, colleagues, family and even with strangers through the help of online social networks (OSNs) such as Facebook, Google+, and Twitter. In recent years, we have seen the tremendous growth in the application of OSNs. OSN provides each user with a virtual space containing profile information, a list of the user’s friends, as well in Facebook, where friends and users can post data, contents, statuses and leave messages. A user profile contains information with respect to the user’s birthday, gender, likes, education and work history, and contact information. Users can upload contents into their or others profile and can tag users who appear in the content. A tag is a reference to others profile or user space. OSNs allow the users to be policy administrators or the protection of user data [3]. Users can restrict data sharing to a set of trusted people.

Even though OSNs currently provide simple access control mechanisms allowing users to govern access to information contained in their own spaces, users, have no control over data residing outside their spaces. Simple protection mechanisms have been provided by the OSN eg: removing a tag from the photo. But these mechanisms suffer certain limitations. For example removing a tag simply removes the name tag from the photo, but the photo still remains there. Hence it is necessary to develop an access control mechanism including all the authorization requirements from multiple users. Each of the controllers of the content can set his/her privacy settings and can specify who can see the content. If two users disagree on whom the shared data is to be exposed, then privacy conflict occurs. So a mechanism is required to identify the privacy conflicting segments and resolve those privacy conflicts.

II. RELATED WORK

Existing access control mechanisms for online social networks [1] are based on the trust and reputation. The friend of friend ontology based distributed identity management system for online social network where relationships are associated with a trust level which indicates the level of friendship between the users participating in a given relationship. Based on the relationship type, depth and trust level between the users in online social network, this model allows the specification access rules for online resource. Social Network Systems pioneer a paradigm of access control that is distinct from traditional approaches to access control. Gates coined the term Relationship-Based Access Control (ReBAC)[4] to refer to this paradigm. ReBAC is characterized by the explicit tracking of interpersonal relationships between users, and the expression of access control policies in terms of these relationships. Another work demonstrates that in Facebook-style Social Network Systems (FSNSs)[5], which are a generalization of the access control model of Facebook, an access control policy specifies a graph-theoretic relationship between the resource owner and resource accessor that must hold in the social graph in order for access to be granted. The paper named Rule-Based Access Control for Social Networks [6] presented an access control model for WBSNs, where policies are specified in terms of constraints on the type, depth, and trust level of relationships existing between users. Relevant features of our model are the use of certificates for granting relationships’ authenticity, and the client-side enforcement of access control according to a rule-based approach, where a subject requesting to access an object must demonstrate that it has the rights of doing that by means of a proof. In contrast to the existing methods, the

115
new method proposes a model to capture the multiparty access control issue in OSNs, along with a general policy specification scheme and a simple but flexible conflict resolution mechanism for collaborative management of shared data in OSNs.

III. MULTIPARTY ACCESS CONTROL MODEL FOR OSN

OSN is represented by a friendship network, a set of user groups and a collection of user data. The friendship network of an OSN is a graph, where a user is represented by a node and each edge represents a friendship link between two users. OSNs include an important feature called groups where users can be organized in it where each group has a unique name. Group enables users of an OSN to easily find other users with whom they might share specific interests. Figure 1 shows the system architecture of the proposed system.

![System Architecture](image)

Privacy Policy Specification

Privacy requirements from multiple associated users over the shared data item are essential for the collaborative management of data sharing in OSNs. Multiple users can set their privacy requirements over the shared data item.

Controller Specification

In addition to the owner of a data item, the other controllers include contributor, disseminator and stakeholders also need to control the use of shared data.

Owner: In Owner module let d be a data item in the space of a user u in the social network. The user u is called the owner of d.

Contributor: In Contributor module let d be a data item published by a user u in someone else’s space in the social network. The contributor publishes content to other’s space and the content may also have multiple stakeholders (e.g., tagged users).

Stakeholder: In Stakeholder module let d be a data item in the space of a user in the social network. Let T be the set of tagged users associated with d. A user u is called a stakeholder of d, if $u \in T$ who has a relationship with another user called *stakeholder*, shares the relationship with an accessor. In this scenario, authorization requirements from both the owner and the stakeholder should be considered. Otherwise, the stakeholder’s privacy concern may be violated. A shared content has multiple stakeholders.

Disseminator: In Disseminator module let d be a data item shared by a user u from someone else’s space to his/her space in the social network. The user u is called a disseminator of d. A content sharing pattern where the sharing starts with an *originator (owner)* or contributor who uploads the content) publishing the content, and then a disseminator views and shares the content. All access control policies defined by associated users should be enforced to regulate access of the content in disseminator’s space.

Accessor Specification

Accessors are a set of users to who are granted access to the data. Accessors can be represented with a set of user names, the friendship or a set of group names in OSNs. To employ collaborative privacy management, trust level is introduced which is assigned to the accessors while defining privacy policies.

Data Specification

User data is made up of three components. *User profile* describes who a user is in the OSN. *User friendship* shows who a user knows in the OSN, including a list of friends to represent connections with family, coworkers etc. *User content* indicates what a user has in the OSN, including photos, videos, statuses, and all other data items. Let $d \in D$ be a data item, and s be a sensitivity level, which is a rational number in the range $[0, 1]$, assigned to d. The data specification is defined as a tuple $< d; s >$.

Privacy Policy

A privacy policy is a 4-tuple $P = < \text{controller}; \text{accessor}; \text{data}; \text{effect} >$, where controller is a controller specification, accessor is an access specification, data is a data specification and effect $\in \{ \text{permit}; \text{deny} \}$ is the authorization effect of the policy.

Identifying and Resolving Privacy Conflicts

A privacy conflict occurs when two users disagree on whom the shared data item should be exposed to. The
main reason leading to the privacy conflicts is that multiple
associated users of the shared data item have different
privacy concerns over the data item. For example,
assume that Carol and David are two controllers of a
photo. Each of them defines a privacy policy stating only
her/his friends can view this photo. It is so impossible that
Alice and Bob have the same set of friends, privacy
conflicts may always exist considering collaborative control
over the shared data item. The primitive solution for this
problem is to allow the common friends of both
parties to access the data. But this solution doesn’t
always produce desirable results for resolving multiparty
privacy conflicts. A strong conflict resolution strategy may
provide a better privacy protection. In the meantime, it may
reduce the social value of data sharing in OSNs. Therefore,
it is important to consider the trade-off between privacy
protection and data sharing while resolving privacy
conflicts. To address this problem, a mechanism for
identifying multiparty privacy conflicts, as well as a
systematic solution for resolving multiparty privacy
conflicts is introduced.

Privacy Conflict Identification

By specifying the privacy policies to reflect the
privacy concern, a set of trusted users who can access
the data item is defined by each controller of the shared
data item d. The set of trusted users represents an
accessor space for the controller. Then we segment the
accessor space of all accessors into disjoint segments as
conflicting segments and non conflicting segments.
A conflicting segment doesn’t contain all controllers
access spaces that means some of the accessors are
untrusted by some controllers. A non conflicting segment
covers all the accessors spaces that means all the
accessors are trusted by all the controllers.

Privacy Conflict Resolution

The process of privacy conflict resolution makes
a decision to allow or deny the accessors within the
conflicting segments to access the shared data item.
Allowing the accessors contained in conflicting segments to
access the data item may cause privacy risk, but
denying a set of accessors in conflicting segments to
access the data item may result in sharing loss. The
proposed privacy conflict resolution approach attempts to
find an optimal tradeoff between privacy protection and
data sharing.

Measuring Privacy Risk: The privacy risk of a
conflicting segment is an indicator of potential threat to
the privacy of controllers in terms of the shared data
item. Higher the privacy risk of a conflicting segment, the
higher the threat to controllers’ privacy.

The privacy risk of a conflicting segment is calculated by a monotonically increasing function with
the following parameters:

Number of Privacy Conflicts: The number of privacy
conflicts in a conflicting segment is indicated by the
number of the untrusting controllers denoted by
controllersut(i).

General Privacy Concern of an Untrusting Controller:
The general privacy concern of an untrusting controller j is
denoted as pcj. The general privacy concern of a controller
can be derived from her/his default privacy setting for data
sharing.

Sensitivity of the Data Item: Data sensitivity in a way
defines controllers’ perceptions of the confidentiality of
the data being transmitted. The sensitivity level of the
shared data item explicitly chosen by an untrusting
controller j is denoted as slj

Visibility of the Data Item: The visibility of the data
item with respect to a conflicting segment captures how many accessors are contained in the segment.

Trust of an Accessor: The trust level of an accessor k
is denoted as tk, which is an average value of the trust
levels defined by the trusting controllers of the conflicting
segment for the accessor.

The privacy risk of a conflict segment i due to
an untrusting controller j, denoted as PR(i, j), is
defined as

\[PR(i, j) = pcj \times slj \times \sum_{k} caccessors(i) \times (1 - tk) \]

where, function accessors(i) returns all accessors
in a segment i, and \(\times \) operator is used to represent any
arbitrary combination functions. For simplicity, we utilize
the product operator.

In order to measure the overall privacy risk of a
conflicting segment i, denoted as PR(i), we can use
following equation to aggregate the privacy risks of i due to
different untrusting controller.

\[PR(i) = \sum_{j} controllersut(i) (PR(i, j)) \]

\[= \sum_{j} controllersut(i) (pcj \times slj \times \sum_{k} caccessors(i) (1 - tk)) \]

Measuring Sharing Loss: When the decision of
privacy conflict resolution for a conflicting segment is
“deny”, it may cause losses in potential data sharing,
since there are controllers expecting to allow the
accessors in the conflicting segment to access the data
item. Similar to the measurement of the privacy risk, five
factors are adopted to measure the sharing loss for a
conflicting segment. Compared with the factors used for
quantifying the privacy risk, the only difference is that
we will utilize a factor, number of trusting
controllers, to replace the factor, number of privacy conflicts (untrusting controllers), for evaluating the sharing loss of a conflicting segment. The overall sharing loss $SL(i)$ of a conflicting segment i is computed as follows:

$$SL(i) = \sum \text{controller}(i)((1-p_c)\times \text{sl}) \times \sum \text{controller}(i)\text{tlk}$$

where, function controller(i) returns all trusting controllers of a segment i.

We can first calculate the privacy risk (PR(i)) and the sharing loss (SL(i)) for each conflict segment (i), individually. Finally, following equation can be utilized to make the decisions (permitting or denying conflicting segments) for privacy conflict resolution, guaranteeing to always find an optimal solution. Where α and β preference weights given to privacy risk and sharing loss. After finding the values of privacy risk and sharing loss, a decision is made on the list of accessors in the conflicting segments who can have the access to the data. Finally, the permitted users in the conflicting segment and all the accessors in the non-conflicting segments are given access to the shared data item.

IV. CONCLUSIONS

In this paper we have proposed a multiparty access control model for the collaborative management of shared data. In this approach each of the controllers of the data item has the right to set the privacy policy settings on the data item such that the controllers can specify who can see or cannot see the shared data item. Also we have implemented a solution for privacy conflict detection and resolution for collaborative data sharing in OSNs. Our conflict resolution mechanism considers privacy-sharing tradeoff by quantifying privacy risk and sharing loss.

V. FUTURE ENHANCEMENT

The proposed system is restricted to deal with photo sharing in online social networks. The future work of this model can be extended to deal with different kinds of files such as audio files, video files, documents and even comments in a post or an image. Also, we would extend our work to address security and privacy challenges for emerging information sharing services such as location sharing and other social network platforms.

REFERENCES

http://www.facebook.com/policy.php/

[3] Hongxin Hu, Member, Gail-Joon Ahn, and Jan Jorgensen,
“Multiparty Access Control for Online SocialNetworks: Model and Mechanisms”, IEEE Transactions On Knowledge And Data Engineering, July 2013

